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Introducing a metric space, we propose a gravitational theory in which the form 
of the basic equations of mechanics, the field equations, and the equations of 
motion are the same as that of the corresponding equations in electrodynamics. The 
theory reveals a very close relation between the gravitational and electromagnetic 
fields. Finally, we consider the field due to an arbitrarily moving mass point. 

1. I N T R O D U C T I O N  

In re la t iv is t ic  m e c h a n i c s ,  the e q u a t i o n s  o f  m o t i o n  for  a mass  po in t  have  

the fo rm 

d (mui) = ~ _ I G  i (1) 
dt  

wh er e  G ;  is a four -vec to r  k n o w n  as the M i n k o w s k i  force,  u" = dxg/dT, d~ = 
13-1dt, 13 = (1 - v21c2) -u2,  x ~ = ict, x I = x,  x 2 = y, x 3 = z, and v 2 = yr + 
~2 + ~2. 

O n  the o the r  hand ,  u g c an  be  c o n s i d e r e d  as f u n c t i o ns  o f  t ime  and  coord i -  

na tes  x g, i = 1, 2, 3, and  we  have  

d (mui) = m Otu i + ~ YdOju i 
d t  ]= t 

-~ m Otu i -~- ~ (xJOju i -- xJOgu j) -'~ ~ xJOgu j 
j = l  j = l  

m c20i~ + O,u g + ~ S:J(Oju g - OguJ) , i = O, 1, 2, 3 (2) 
j = l  
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since 

3 3 1 
2 fcJOiuJ = ~ ~ -IlljOiuj = 2 ~-10i(~2V2) = C20i~ 

j=l j=i 

Here we use 8,, Oj, and 2J for 0/0t, O/OxJ, and dxqdt, respectively. 
From (2) we have 

d (c213) = V . L ,  
dt 

where 

L =  

M = rot A, 

d 
(mu) = m ( L + V •  M) 

- g r a d  ~ - 0~A, �9 = -c213, Ah = - u  b, 

A = (Ai, A2, A3), V = (,r .~2, .~3), 

(3) 

b = 1 , 2 , 3  

u = ( u ' ,  u 2, u 3) 

(4) 

The unknown functions L and M can be obtained from a system of partial 
differential equations, namely the field equations, with some additional 
conditions. 

As shown above, equations (1) can be written in the form of  equations 
(3), and the relativistic force is expressed as 

[3_IG 0 = im V . L ,  13-t(G l, G 2, G 3) = m(L + V • M) 
c 

Inasmuch as the form of the right-hand side of equations (3) is the same 
as that of the Lorentz force in electrodynamics and the definitions of  L and 
M in (4) yield the half of  the Maxwell field equations 

rot L + 0,M = 0, div M = 0 (5) 

it is natural to believe L and M also satisfy the other half of  the Maxwell 
field equations (for empty space) 

div N = 0, rot K - 0,N = 0 (6) 

where N = coL, K = (l/lx0)M, r 0 = llc 2, and e0 and i~0 are parameters. 
Sections 2 and 3 are devoted to the derivation of  equations (6). 

2. THE G E O M E T R Y  

It is well known that universal gravitation does not fit into the framework 
of  uniform Galilean space. It is possible, however, to base a theory of universal 
gravitation on the idea of  abandoning the uniformity of space as a whole 
and attributing to space only a certain kind of uniformity on an infinitesimal 
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scale. There still exists on the infinitely small scale a uniformity like the one 
expressed by the Lorentz transformations. That this is so is connected with 
the fact that in the vicinity of  a given point of  space a gravitational field can 
be imitated by a field of  acceleration (the principle of  equivalence). It is 
obvious that at least one nonuniform space exists, that is, real space, and in 
which the form of  the expression for the space-time interval between two 
infinitesimally near world points is preserved under Lorentz transformations. 
In the general case of  Riemannian geometry there are no transformations of  
the coordinates that leave invariant the coefficients g~f~(x ~ x ~, x 2, x 3) of the 
quadratic form for the squared infinitesimal distance invariant. However, 
since in the vicinity of a given point of space the gravitational field can be 
imitated by a field of acceleration, it is natural to write g,~ in the form 

g,4~ = g,~f~( u~ ul, u2, u3); d• 
u i = - -  = ui(x ~ x ' ,  x 2, x3), 

dx 
et, 13, i = 0, 1, 2, 3 

where d'r is a scalar, and g(u)  is an invariant form. The invariance of the 
expression for g~l~ under Lorentz transformations is expressed by g 'a  = 
g~f~(u '~ u '~, u '2, u'3), u 'i = dx'i ld'r.  This is a necessary condition of the 
principle of  relativity. 

The special theory of relativity formally characterizes relativistic physics 
by the invariance of the expression for the space-time interval between two 
world points 

S~12 = c 2 ( / 2  - tl) 2 -- (X2 -- Xl) 2 -- (Y2 -- Yl) 2 -- (Z2 -- Zl) 2 

The invariance of this quadratic form of the coordinate differences restricts 
the group of all conceivable linear transformations of  the four coordinates 
x, y, z, and t to that of  the Lorentz transformations. We shall show that it is 
possible to introduce a nonuniform space such that the expression for the 
space-time interval.between two infinitesimally near world points is Lorentz 
invariant under the above-mentioned meaning. If we put x ~ = ict,  
i = ,,/-L-~, and x = x I, y = x z, z = x 3, then the inverse Lorentz transformation 
is of  the form 

x i = cikx 'k or d r  / = c~d.x 'k, 

0, i 4 : k  = O, 1 , 2 , 3  
8ik = 1, i = k (7) 

With the aid of (7) we obtain 

1 3 - 2 ( d x O ) 2  = 1 3 ' - 2 ( d x ' O ) 2  ( 8 )  
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where 

( 1 - c 2  ] 

= 1 -  c2 ] 

\ d t  J \ d t  J 
+ 

V n2 
+ \ d r /  \ d t  J 

It follows from (8) that [3-~dt = [5 ' - ld t  '. If we put d'r = [3-=dt = 
f3'-~dt  ', u i = dxi/d't,  and u 'i = dx'i/d'r, then from (7) we have 

U i = Cik u ' k  (9) 

We write the fundamental quadratic form as 

ds 2 = gijdxidx j (10) 

The coefficients gij must be so chosen that the form of  (10) is preserved 
under Lorentz transformations. If we impose this condition on the coefficients 
gij, then 

gq = CtBgj + c2 u i u j  (I I) 

where c~ and c2 are constant. The substitution from (7) converts (10) into 
d s  2 = gijs 'h. Thus, 

g~h = gijci~cJh = (Cl~ij  "~- c2uiuJ)cik~h 

i i .~ i j i j ,m tn = ClCkC h C2CmCnCkChU U "~- Cl~kh "]- C2ulku Ih 

Clearly, the form of  (11) is preserved and therefore the form of  (10) is 
preserved under Lorentz transformation if g~j is defined by (11). On the other 
hand, if gij is defined by (11), then it can be proved that the invariance of 
the form of (10) restricts the group of  all conceivable linear transformations 
to that of  the Lorentz transformations. The proof is quite elementary and will 
be omitted here. Since (u~) 2 = - c  2, the contravariant metric tensor can be 
written as follows: 

C2 gZj = 1 ~ij + u~u j (12) 
CI C1(--r + C2 C2) 

Inasmuch as ds 2 = gijdxidx j = ( - c  t + c2c2)r 2 and g = Igijl : 
c3(ct - c2c2), where g denotes the determinant of the covariant metric tensor, 
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it is natural to restrict the choice of constants c~ and c2 by conditions which 
ensure that ds  2 = c2d'r 2 and g = - I. Thus, cl = 1, c2 = 2/c  2, and 

2 2 
gu = ~ij + -~ uiuj ,  g~j = ~ij + -~ u,u j (13) 

From (9) we know that u g is a contravariant vector, namely, four-dimen- 
sional velocity. The covariant vector is written as ui = guu  j = - u  ~. In order 
to formulate field equations and the equations of  motion in this geometry, 
we introduce some scalars and vectors. 

(1) If u~.,~ denotes the covariant derivative of  the vector u13, then F,~I3 = 
uf~.,~ - u~,.f~ = O,~uf~ - O~u~, is a tensor and F,~ = u~Ff~r is a vector. Further, 

F ~ F  ~ = u f~Ff~u~F~vg  w" = u%l~O~u~Of~u~ (14) 

is a scalar. 
(2) If we denote the Christoffel symbol, the second-rank curvature tensor, 

and the curvature scalar by F~},, R,-k, and R, respectively, then since , ~  = 
1, we have 

ik I r l  l-'m m I ,f-L-'gR gik. Rik g (OtF~k ak['ll + . . . .  .tikJtlm Fit F~,,) (15) 

where 

4 
= , f -2-gG + ~ a.(u~a~u~,) 

4 2 2 
, f - L - g G = - ~ O ~ u ~ . O ~ u ~  - - - O , u ~ . O ~ U ~ c 2  - -  "~  Oa UB 'Oa R  B 

2 
C 4 u ~ U ~ O ~ u v ' O ~ U ~  

(16) 

3. T H E  F I E L D  EQUATIONS AND T H E  EQUATIONS OF 
M O T I O N  

Since 

it follows that 

u~O~u~ = -u~O~,u~ = -�89 2 = �89 2 = 0 

du  a 
d'r = uf~Of~u'~ = -uf~Of~u'~ 

d~-~ 
d.rZ - u f~F~ (17) 

Equation (17) denotes the equations of motion and yields equations (3). 
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The field equations for empty space can be represented as the Euler- 
Lagrange equations of a variational problem. The integral is a four-dimen- 
sional integral 

I = f A ~ dl~, BI = 0, d ~  = dx~ 3 (18) 

The geometrical properties are indissolubly linked with the field of 
acceleration. As was shown above, R and F,~F ~' are scalars concerned with 
the geometrical properties and the field of acceleration, respectively. Thus it 
is natural to define A as A = R + kF,~F '~. The constant k will be determined 
later. With the aid of (15), the variation of the integral (18) can be represented 
as follows: 

BI = B I (R + kF,~F ~) x / ~  d~ 

f 4f = s (G + k r . F ~ ) , f ~  dC~ + -~ 

The last integral vanishes. 
We have 

Bl=I[O(G+kF,~b-~)v/--~ 
Oui - Ot 

and therefore 

a(G + k F . F ~ ) , ~  
- -  O I 

Oui 

a,~[B(uf~Of~u,~)] d~ 

J Su, 

o(6 + k r . P ) , / - ~  

O(atui) 

dO = 0 

= 0 (19)  

Substitution from (14) and (16) converts (19) into 

4 
+ -~O.F.i = 0 

Taking k = 21c 4, we obtain the field equations for empty space 

a,~F~,i = 0 (20) 

If we introduce two parameters e0 and tx0, %lz0 = l/c z, then equation (20) 
yield equations (6). 

The derivation of the field equations in the interior of matter will be 
omitted here. 
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4. F IELD DUE TO A MOVING MASS POINT 

As was shown above, the gravitational field equations are expressed 
in the form of Maxwell 's field equations in electrodynamics. Thus, in the 
Lienard-Wiechert potential (Pathria, 1963) let the origin of the system S 
with respect to which the charge has velocity u coincide with the point of 
observation; we obtain �9 and A of a mass point moving arbitrarily: 

- P~ A - ~xV (21) 
S ' C2S 

where s = r + r . V / c ,  - V  = -dr /dr '  is the velocity of the mass point with 
respect to the system S fixed at the point of observation, t' = t - r(t')/c, ~L 
= kin, k is the Newtonian constant of gravitation, and r is the radius vector 
directed from the position of the mass point at time t' to the point of observa- 
tion. Moreover, r, r, and V must be taken as corresponding to the time t' 
and not to the time t. From these, one can directly calculate the field intensities 
L and M by means of the relations (4): 

_ t x r  V _ _  r + r v  1 c2 
L ~-- c252 c 

V,(I 
r . V  

v 2 r.V) 
c 2 c f 

(22) 

t 

where V = dVIdt ' .  On the other hand, by taking the Lorentz gauge we can 
obtain (21) directly from the field equations (6). Expanding r, r, and V into 
Taylor series based on the point t' = t, we have 

(s(t,))_ m = r._.__V + + O(c_3) 
cr2 c2r3 -It' 

2c2---r ~ 2 d r  3 ],  + O(c -3) 

V ( t ' ) = ( v - r * ) ,  + 0 ( c - 2 ) c  

and it follows that 

~ ~v~ ~ ( r .  v )  + -~r - ~ V + O(c -3) 
L = r3 2c2 r  3 2c2r 3 2c2r 
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It is simple to see that the interval of the mass points proper time d? is 
d t / x / l  - v 2 / c  2, where 

and from (3) we have 

(d~)  = L + V  x M (24) 

We checked that L and M expressed in (23) satisfy equations (5) and (6). 
Substitution from (23) into (24) yields 

d2 ~ 
dt 2 r - - -  r + F 

where 

Ix 2 31x(r" dr/dt)2~ 21-~(r" dr/dt)  dr  F = 31x(dr/dt)2 + + + (25) 
2c2r 3 c-~r 4 -~c2- ~ ] r  c2r3 dt 

We neglect the terms of  O(c -3) in (25). 
If R, S, and W denote the orthogonal components of the perturbing 

acceleration F (R radially outward, S in the orbital plane orthogonal to R and 
directed with the motion, and W orthogonal to the orbit in such a sense that 
R S W  forms a right-handed triad), then we have 

[.I, 2 7~( r .  i,)2 R -  3~v2 + + 
2c2r2 c-~r 3 2c2r 4 

S - 21~(r" f)v 2 21~(r" ~)3 
hc2r 2 hc2r 4 

W = 0  

where h = (p,p)l/2 p = a( l  - e2), a is the semiaxis, and e is the eccentricity. 
By using a convenient method (Cui, 1984) based on the planetary equa- 

tions (Groves, 1965) we obtain the displacement of  the perihelion after one 
period of  revolution of  the planet: 

Ato - 6~-rr 
c2p 

This result is the same as the corresponding result of the general theory 
of relativity. 
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